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Abstract  

This paper introduces the transmuted new generalized inverse Weibull distribution by using the quadratic 

rank transmutation map (QRTM) scheme studied by Shaw et al. (2007). The proposed model contains 

twenty three lifetime distributions as special sub-models. Some mathematical properties of the new 

distribution are formulated, such as quantile function, Rényi entropy, mean deviations, moments, moment 

generating function and order statistics. The method of maximum likelihood is used for estimating the 

model parameters. We illustrate the flexibility and potential usefulness of the new distribution by means of 

two real data sets. 

Keywords:   New generalized inverse Weibull distribution; Moment estimation; Moment 

generating function; Order statistics; Maximum likelihood estimation. 

1.   Introduction 

In the theory of life testing, many different families of lifetime distribution have been 

developed for describing the reliability behaviour of the components or process. These 

new families of lifetime distributions can be obtained by adding parameters to the well 

established distributions for obtaining more flexibility in the new extended lifetime 

distribution. Because of this motivation, we introducing a new lifetime distribution called 

the transmuted new generalized inverse weibull distribution by using quadratic rank 

transmutation map (QRTM) technique studied by Shaw et al. (2007). Historically 

speaking, the Inverse Weibull distribution (also known as type 2 extreme value or the 

Fréchet distribution) is a very flexible lifetime distribution having the inverse Rayleigh 

and inverse exponential distributions as special sub-models commonly used for 

modelling reliability data. The Inverse Weibull distribution has been applied in many 

areas of scientific disciplines, such as reliability engineering, aeronautics, hydrology, 

physics, biomedical sciences, agriculture, pharmacutical sciences, psychology, 

metrology, economics and actuarial sciences etc. More  recently, Khan and King (2016) 

proposed the new generalized inverse Weibull (NGIW) distribution and investigated 

many structural properties for modeling reliability engineering application.  
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The cdf of the NGIW distribution is given by 

𝐹(𝑥) = 1 −⁡[1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

𝜙

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

where⁡𝛽, 𝜙 > 0 are the shape parameters and 𝛼, 𝛾 > 0 are the scale parameters. The 

probability density function corresponding to (1) is given by 
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1
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𝛽−1

} (
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𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]
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,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

 

The CDF given in equation (1) approches to the eleven lifetime distributions when its 

parameters change. Khan and King (2012)  proposed the modified Inverse Weibull 

distribution and presented a comprehensive description of the mathematical properties of 

this model along with its reliability behavior. Using quadratic rank transmutation map 

(QRTM) technique, we introduce the transmuted the new generalized inverse Weibull 

(NGIW) distribution by introducing a new parameter λ that would offer more flexibility 

in the proposed model. Several distributions have been proposed under this methodology 

such as transmuted extreme value distribution (Gokarna and Chris, 2009) studied with 

application to climate data, the transmuted Weibull distribution (Gokarna and Chris, 

2011) proposed with two applications, Gokarna (2013) proposed the transmuted Log-

Logistic distribution and studied its various structural properties. Khan and King (2013) 

proposed the transmuted modified Weibull distribution as an important competitive 

model with eleven lifetime distributions as sub-models along with its theoretical 

properties. Khan and King (2013) studied the flexibility of the transmuted generalized 

Inverse Weibull distribution with application to reliability data. Merovci (2013) studied 

the transmuted rayleigh distribution. Elbatal et al. (2013a, 2013b) proposed and studied 

the transmuted additive Weibull and transmuted modified inverse Weibull distributions.  

Khan et al. (2014a, 2014b) proposed the transmuted inverse Weibull distribution and 

studied its various structural properties with an application to survival data. More 

recently, Khan and King (2015) explored the flexibility of the transmuted modified 

Inverse Rayleigh distribution using QRTM technique which extends the modified Inverse 

Rayleigh distribution with application to reliability data. A random variable X is said to 

have transmuted distribution if its cumulative distribution function (cdf) is given by 

𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) − 𝜆𝐺(𝑥)2, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡|𝜆| ≤ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   (3) 

and 

𝑓(𝑥) = 𝑔(𝑥){(1 + 𝜆) − 2𝜆𝐺(𝑥)}, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   (4) 

where 𝐺(𝑥) is the cdf of the baseline distribution. It is important to note that at λ = 0 we 

have the distribution of the baseline random variable.  

 

The rest of this article is organized as follows, In Section 2, we present the analytical 

shapes of the probability density and distribution function of the proposed model. Some 

mathematical properties are formulated in Section 3, such as expressions for the moment 

estimation and moment generating function. Maximum likelihood estimates (MLEs) of 

the unknown parameters are discussed in Section 4. We derive expressions for the Rényi 
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entropy and mean deviations in section 5. The order statistics are formulated in Section 6. 

In Section 7, we compare the proposed model with three other lifetime distributions by 

means of two real data sets to illustrate its usefulness. In Section 8, we offer some 

Concluding remarks. 

2.   Transmuted New Generalized Inverse Weibull Distribution 

A random variable 𝑿 is said to have transmuted new generalized inverse Weibull 

(TNGIW) distribution with parameters ⁡𝜶, 𝜷, 𝜸,𝝓 > 𝟎 and |𝛌| ≤ 𝟏, 𝒙 > 𝟎. If the 

probability density function is given by 
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The CDF corresponding to equation (5) is given by 
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Figure 1 shows the visualizations of the transmuted new generalized inverse Weibull 

PDF with some selected choice of parameters. Some useful characterizations of the 

TNGIW distribution are formulated as reliability function (RF), hazard function and 

reversed hazard function defined as  
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Figure 1: Plots of the TNGIW pdf for some parameter values. 

  
Figure 2: Plots of the TNGIW hf for some parameter values. 
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The cumulative hazard function (CHF) of the TNGIW distribution is defined as 

𝐻(𝑥)

= ∫
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}].⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

 

The quantile function of the TNGIW distribution is the real solution of the following 

equation 

𝛾 (
1

𝑥𝑞
)
𝛽

+
𝛼

𝑥𝑞
+ 𝑙𝑛 {1 − (1 −

(1+𝜆)−√(1+𝜆)2−4𝜆𝑞

2𝜆
)

1

𝜙

} = 0.     (12) 

 

A random variable 𝑋 with density (5) is denoted by 𝑋~𝑇𝑁𝐺𝐼𝑊(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆). When 

the transmuting parameter 𝜆 = 0, we obtain the new generalized inverse Weibull 

distribution. Figure 2 illustrates the hazard function of the TNGIW distribution with 

different choice of parameters. These visualizations of the failure rates show that the 

proposed model has upside down hazard rate function for some selected choice of 

parameters. Table 1 listed twenty three lifetime distributions as special sub-models of the 

transmuted new generalized inverse Weibull distribution. 

Table 1: Sub-models of the Transmuted New Generalized Inverse Weibull 

distribution 

S. No Model α β γ ϕ λ Authors 

1 TNGIE − 1 − − − New 

2 TNGIR − 2 − − − New 

3 TMIW − − − 1 − Elbatal (2013b) 

4 TMIR − 2 − 1 − Khan & King (2015) 

5 TMIE − 1 − 1 − New 

6 TGIW 0 − − − − Khan & King (2013b) 

7 TGIR 0 2 − − − New 

8 TGIE 0 1 − − − New 

9 

10 

11 

TIW 

TIR 

TIE 

0 

0 

0 

− 

2 

1 

− 

− 

− 

1 

1 

1 

− 

− 

− 

Khan & King (2014b) 

Vikas et al. (2014) 

Oguntunde et al. (2015) 



Muhammad Shuaib Khan, Robert King, Irene Lena Hudson 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp277-296 282 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

NGIW 

NGIR 

NGIE 

MIW 

MIR 

MIE 

GIW 

GIR 

GIE 

IW 

IR 

IE 

− 

− 

− 

0 

0 

0 

0 

0 

0 

− 

− 

− 

− 

2 

1 

− 

2 

1 

− 

2 

1 

− 

2 

1 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

− 

1 

1 

1 

− 

− 

− 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Khan & King (2016) 

New 

New 

Khan & King (2012) 

Khan M. S. (2014) 

New 

Gusmão et al. (2009) 

Gusmão et al. (2009) 

Gusmão et al. (2009) 

Khan et al. (2008) 

Voda, V. Gh. (1972) 

Klugman et al. (2012) 

Note: T: Transmuted; G, Generalized; M, Modified; N, New; I, Inverse; W, Weibull; E, 

Exponential; R, Rayleigh. 

3.   Statistical Properties 

This section formulates the 𝑘𝑡ℎ moment and the moment generating function of the 

transmuted new generalized inverse Weibull distribution.  

Theorem 1: If 𝑋⁡has the 𝑇𝑁𝐺𝐼𝑊(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆) distribution with |λ| ≤ 1, then the 𝑘𝑡ℎ 

moment of 𝑋 say 𝜇́𝑘 is given as follows 

𝜇́𝑘 = (1 − 𝜆) ∑ (
𝜙 − 1

𝒾
)

∞

𝒾,𝒿=0

𝛾𝒿𝜙(−1)𝒾+𝒿(𝒾 + 1)𝒿

𝒿!
𝜉(𝛼, 𝛽, 𝛾, 𝒾, 𝒿, 𝑘)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

+2𝜆 ∑ (
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𝒾
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∞
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𝛾𝒿𝜙(−1)𝒾+𝒿(𝒾 + 1)𝒿

𝒿!
𝜉(𝛼, 𝛽, 𝛾, 𝒾, 𝒿, 𝑘),⁡⁡⁡ 

where 

𝜉(𝛼, 𝛽, 𝛾, 𝒾, 𝒿, 𝑘) =
𝛼𝛤(𝛽𝒿 − 𝑘 + 1)
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(𝛼(𝒾 + 1))
𝛽(𝒿+1)−𝑘

. 

 

Proof: The 𝑘𝑡ℎ⁡moment of 𝑋 can be obtained from (5) as 

𝜇́𝑘 = ∫ 𝑥𝑘
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By using equation (6) we can write the above integral as 

𝜇́𝑘 = 
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− 𝛾 (

1

𝑥
)

𝛽

} [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

2𝜙−1

𝑑𝑥
∞

0

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+2𝜆 ∫ 𝑥𝑘−𝛽−1𝜙𝛽𝛾𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

} [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

2𝜙−1

𝑑𝑥
∞

0

, 

 

By using the Binomial expansion, the above integral reduces to 

𝜇́𝑘 = (1 − 𝜆)∑(
𝜙 − 1

𝒾
)

∞

𝒾=0

𝜙𝛼(−1)𝒾 ⁡⁡⁡∫ 𝑥𝑘−2 𝑒𝑥𝑝 {−
𝛼

𝑥
(𝒾 + 1) − 𝛾 (

1

𝑥
)

𝛽

(𝒾 + 1)} 𝑑𝑥
∞

0

 

⁡⁡⁡⁡⁡⁡⁡⁡+(1 − 𝜆)∑(
𝜙 − 1

𝒾
)

∞

𝒾=0

𝜙𝛽𝛾(−1)𝒾 ⁡⁡⁡∫ 𝑥𝑘−𝛽−1 𝑒𝑥𝑝 {−
𝛼

𝑥
(𝒾 + 1)

∞

0

− 𝛾 (
1

𝑥
)

𝛽

(𝒾 + 1)} 𝑑𝑥 

⁡⁡⁡⁡⁡⁡⁡⁡+2𝜆 ∑(
2𝜙 − 1

𝒾
)

∞

𝒾=0

𝜙𝛼(−1)𝒾 ⁡∫ 𝑥𝑘−2 𝑒𝑥𝑝 {−
𝛼

𝑥
(𝒾 + 1) − 𝛾 (

1

𝑥
)

𝛽

(𝒾 + 1)} 𝑑𝑥
∞

0

⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡+2𝜆 ∑(
2𝜙 − 1

𝒾
)

∞

𝒾=0

𝜙𝛽𝛾(−1)𝒾 ⁡⁡⁡∫ 𝑥𝑘−𝛽−1 𝑒𝑥𝑝 {−
𝛼

𝑥
(𝒾 + 1) − 𝛾 (

1

𝑥
)
𝛽

(𝒾 + 1)} 𝑑𝑥,
∞

0

 

 

Hence, we obtain the final result 

𝜇́𝑘 = (1 − 𝜆) ∑ (
𝜙 − 1

𝒾
)

∞

𝒾,𝒿=0

𝛾𝒿𝜙(−1)𝒾+𝒿(𝒾 + 1)𝒿

𝒿!
𝜉(𝛼, 𝛽, 𝛾, 𝒾, 𝒿, 𝑘)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

+2𝜆 ∑ (
2𝜙 − 1

𝒾
)

∞

𝒾,𝒿=0

𝛾𝒿𝜙(−1)𝒾+𝒿(𝒾 + 1)𝒿

𝒿!
𝜉(𝛼, 𝛽, 𝛾, 𝒾, 𝒿, 𝑘).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 
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Theorem 2: If 𝑋⁡has the 𝑇𝑁𝐺𝐼𝑊(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆) distribution with |λ| ≤ 1, then the 

moment generating function of X say 𝑀𝑥(𝑡) is given as follows  

𝑀𝑥(𝑡) = (1 − 𝜆) ∑ ∑ (
𝜙 − 1

𝓃
)

∞

𝓃,ℓ=0

𝛾ℓ𝜙(−1)𝓃+ℓ(𝓃 + 1)ℓ{𝛼(𝓃 + 1)𝑡}𝓂

ℓ!𝓂!
𝜚(𝓃, ℓ,𝓂)

∞

𝓂=0

⁡⁡⁡⁡ 

+2𝜆 ∑ ∑ (
2𝜙 − 1

𝓃
)

∞

𝓃,ℓ=0

𝛾ℓ𝜙(−1)𝓃+ℓ(𝓃 + 1)ℓ{𝛼(𝓃 + 1)𝑡}𝓂

ℓ!𝓂!
𝜚(𝓃, ℓ,𝓂)

∞

𝓂=0

,⁡⁡ 

where 

𝜚(𝓃, ℓ,𝓂) =
𝛼𝛤(𝛽ℓ − 𝓂 + 1)

(𝛼(𝓃 + 1))
𝛽ℓ+1

+
𝛽𝛾𝛤(𝛽(ℓ + 1) − 𝓂)

(𝛼(𝓃 + 1))
𝛽(ℓ+1)

. 

 

Proof: By definition the⁡moment generating function of 𝑋 can be obtained from (5) as 

𝑀𝑥(𝑡) = 

∫ 𝑒𝑡𝑥
∞

0

𝜙 (𝛼 + 𝛽𝛾 (
1

𝑥
)

𝛽−1

) 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

} [1 − 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

𝜙−1

𝒰(𝑥)𝑑𝑥, 

 

By using equation (6) the above integral reduces to 

𝑀𝑥(𝑡) = (1 − 𝜆)∫ (
1

𝑥
)

2

𝜙𝛼 𝑒𝑥𝑝 {𝑡𝑥 −
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

} [1 − 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

𝜙−1

𝑑𝑥
∞

0

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+(1 − 𝜆)∫ (
1

𝑥
)

𝛽+1

𝜙𝛽𝛾 𝑒𝑥𝑝 {𝑡𝑥 −
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

} [1
∞

0

− 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

𝜙−1

𝑑𝑥 

+2𝜆 ∫ (
1

𝑥
)
2

𝜙𝛼⁡𝑒𝑥𝑝⁡{𝑡𝑥 −
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

} [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

2𝜙−1

𝑑𝑥
∞

0

 

+2𝜆 ∫ (
1

𝑥
)

𝛽+1

𝜙𝛽𝛾𝑒𝑥𝑝⁡{𝑡𝑥 −
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

} [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

2𝜙−1

𝑑𝑥,
∞

0

 

 

Finally we obtain the moment generating function of the TNGIW distribution as 

𝑀𝑥(𝑡) = (1 − 𝜆) ∑ ∑ (
𝜙 − 1

𝓃
)

∞

𝓃,ℓ=0

𝛾ℓ𝜙(−1)𝓃+ℓ(𝓃 + 1)ℓ{𝛼(𝓃 + 1)𝑡}𝓂

ℓ!𝓂!
𝜚(𝓃, ℓ,𝓂)

∞

𝓂=0

⁡⁡⁡⁡ 

+2𝜆 ∑ ∑ (
2𝜙 − 1

𝓃
)

∞

𝓃,ℓ=0

𝛾ℓ𝜙(−1)𝓃+ℓ(𝓃 + 1)ℓ{𝛼(𝓃 + 1)𝑡}𝓂

ℓ!𝓂!
𝜚(𝓃, ℓ,𝓂)

∞

𝓂=0

. (14)⁡ 
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4.   Maximum Likelihood Estimation 

Consider the random samples 𝑥1⁡, 𝑥2, … , 𝑥𝑛 consisting of 𝑛 observations from the 

TNGIW(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆) distribution. The log-likelihood function ℒ = lnL of the density 

(5) for the parameter vector Θ = (𝛼, 𝛽, 𝛾, 𝜙, 𝜆)  is given by 

ℒ = 𝑛𝑙𝑛𝜙 + ∑𝑙𝑛 {𝛼 + 𝛽𝛾 (
1

𝑥𝑖
)
𝛽−1

}

𝑛

𝑖=1

− ∑(
𝛼

𝑥𝑖
)

𝑛

𝑖=1

+ (𝜙 − 1)∑𝑙𝑛 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝑛

𝑖=1

 

+∑𝑙𝑛 (
1

𝑥𝑖
)
2𝑛

𝑖=1

− 𝛾 ∑(
1

𝑥𝑖
)
𝛽𝑛

𝑖=1

+ ∑𝑙𝑛 {1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝜙

}

𝑛

𝑖=1

⁡.⁡⁡⁡(15) 

 

The components of score vector can be obtained by differentiating (15) with respect to 

𝛼, 𝛽, 𝛾, 𝜙 and λ then equating it to zero, we obtain the estimating equations are 

𝜕ℒ

𝜕𝛼
= ∑{𝛼 + 𝛽𝛾 (

1

𝑥𝑖
)
𝛽−1

}

−1

− ∑(
1

𝑥𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1

+ (𝜙 − 1)∑

1

𝑥𝑖
𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

[1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝑛

𝑖=1

 

+∑
2𝜆

𝜙

𝑥𝑖
[1 − 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙−1

𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

{1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

}

,

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝜕ℒ

𝜕𝛽
= ∑

𝛾 (
1

𝑥𝑖
)
𝛽−1

[𝛽𝑙𝑛 (
1

𝑥𝑖
) + 1]

{𝛼 + 𝛽𝛾 (
1

𝑥𝑖
)
𝛽−1

}

𝑛

𝑖=1

+ (𝜙 − 1)∑
𝛾 (

1

𝑥𝑖
)
𝛽

𝑙𝑛 (
1

𝑥𝑖
) 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

[1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝑛

𝑖=1

 

−𝛾 ∑(
1

𝑥𝑖
)
𝛽

𝑙𝑛 (
1

𝑥𝑖
)

𝑛

𝑖=1

+ ∑
2𝜆𝛾

𝜙

𝑥𝑖
𝛽
[1 − 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙−1

𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

[𝑙𝑛 (
1

𝑥𝑖
)]

−1

{1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

}

,

𝑛

𝑖=1

 

𝜕ℒ

𝜕𝛾
= ∑

𝛽 (
1

𝑥𝑖
)
𝛽−1

{𝛼 + 𝛽𝛾 (
1

𝑥𝑖
)
𝛽−1

}

𝑛

𝑖=0

− ∑(
1

𝑥𝑖
)
𝛽𝑛

𝑖=1

+ (𝜙 − 1)∑
(

1

𝑥𝑖
)
𝛽

𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

[1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝑛

𝑖=1

 

+∑
2𝜆

𝜙

𝑥𝑖
𝛽
[1 − 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙−1

𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}

{1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

}

,

𝑛

𝑖=1

 



Muhammad Shuaib Khan, Robert King, Irene Lena Hudson 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp277-296 286 

𝜕ℒ

𝜕𝜙
=

𝑛

𝜙
+ ∑𝑙𝑛 [1 − 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

𝑛

𝑖=1

 

+2𝜆 ∑
[1 − 𝑒𝑥𝑝⁡{−

𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

𝑙𝑛 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]

{1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

}

,

𝑛

𝑖=1

⁡⁡ 

𝜕ℒ

𝜕𝜆
= ∑

−1 + 2 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

{1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥𝑖
− 𝛾 (

1

𝑥𝑖
)
𝛽

}]
𝜙

}

,

𝑛

𝑖=1

 

 

The log-likelihood function can be maximized by using the BFGS method in R or SAS 

languages. These nonlinear system of equations cannot be solved analytically and 

statistical software can be used to solve them numerically such as R-Package (Adequacy 

Model), SAS (PROC NLMIXED) by using iterative methods such as Limited-Memory 

quasi-Newton algorithm for Bound-constrained optimization (L-BFGS-B), these 

solutions will yield the ML estimators  𝛼̂, 𝛽,̂ 𝛾, 𝜙̂ and 𝜆̂. For the five parameters TNGIW 

distribution pdf all the second order derivatives exist. Thus we have the inverse 

dispersion matrix as 

(

 
 

𝛼̂
𝛽̂
𝛾

𝜙

𝜆̂

̂

)

 
 

~𝑁

[
 
 
 
 
 

(

 
 

𝛼
𝛽
𝛾
𝜙
𝜆)

 
 

,

(

 
 
 

𝑉̂11 𝑉̂12

𝑉̂21 𝑉̂22

𝑉̂13 𝑉̂14 𝑉̂15

𝑉̂23 𝑉̂24 𝑉̂25

𝑉̂31 𝑉̂32

𝑉̂41

𝑉̂51

𝑉̂42

𝑉̂52

𝑉̂33 𝑉̂34 𝑉̂35

𝑉̂43

𝑉̂53

𝑉̂44

𝑉̂54

𝑉̂45

𝑉̂55)

 
 
 

]
 
 
 
 
 

, 

⁡⁡⁡V−1 = −E

[
 
 
 
 
 
 
 
 

∂2ℒ

∂α2

∂2ℒ

∂α∂β

∂2ℒ

∂α∂β

∂2ℒ

∂β2

∂2ℒ

∂α∂γ

∂2ℒ

∂α∂ϕ

∂2ℒ

∂α∂λ

∂2ℒ

∂β∂γ

∂2ℒ

∂β∂ϕ

∂2ℒ

∂β∂λ

∂2ℒ

∂α∂γ

∂2ℒ

∂β ∂γ

∂2ℒ

∂α ∂ϕ

∂2ℒ

∂α ∂λ

∂2ℒ

∂β∂ϕ

∂2ℒ

∂β∂λ

∂2ℒ

∂γ2

∂2ℒ

∂γ∂ϕ

∂2ℒ

∂γ∂λ

∂2ℒ

∂γ∂ϕ

∂2ℒ

∂γ∂λ

∂2ℒ

∂ϕ2

∂2ℒ

∂ϕ∂λ

∂2ℒ

∂ϕ∂λ

∂2ℒ

∂λ2 ]
 
 
 
 
 
 
 
 

     (16) 

 

Equation (16) is the variance covariance matrix of the TNGIW(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆) 

distribution. The asymptotic multivariate normal 𝑁5(0, 𝑉(𝛩)−1) distribution can be used 

to construct the approximate confidence intervals and confidence region of individual 

parameters for the transmuted new generalized inverse Weibull distribution. By using the 

observed information matrix an approximately 100(1 − 𝜉)% confidence intervals for  

𝛼, 𝛽, 𝛾, 𝜙  and 𝜆 can be determined as 

𝛼̂ ± 𝑍𝜉

2

√𝑉̂11,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽̂ ± 𝑍𝜉

2

√𝑉̂22, 𝛾 ± 𝑍𝜉

2

√𝑉̂33,⁡⁡⁡⁡⁡⁡⁡𝜙̂ ± 𝑍𝜉

2

√𝑉̂44,⁡⁡⁡⁡⁡⁡𝜆̂ ± 𝑍𝜉

2

√𝑉̂55⁡ 

where 𝑍𝜉

2
 is the upper 𝜉𝑡ℎ percentile of the standard normal distribution. 
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5.   Entropy and Mean Deviation 

The entropy is the measure of variation or the uncertainty of a random variable 𝑋 for the 

probability density function from the lifetime distribution. The Rényi entropy for the 

random variable 𝑋 with 𝑓(𝑥) is defined as 

𝐼𝑅(𝜌) =
1

1−𝜌
𝑙𝑜𝑔{∫ 𝑓(𝑥)𝜌 𝑑𝑥},        (17) 

where 0 and 1 . The integral in )(RI  of the TNGIW⁡distribution can be defined 

as  

∫ 𝑓(𝑥)𝜌𝑑𝑥
∞

0

= ∫ 𝜙𝜌 (𝛼 + 𝛽𝛾 (
1

𝑥
)

𝛽−1

)

𝜌

[1 − 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

𝜌(𝜙−1)
∞

0

⁡ 

× (
1

𝑥
)
2𝜌

𝑒𝑥𝑝 {−
𝛼𝜌

𝑥
− 𝛾𝜌 (

1

𝑥
)
𝛽

} {1 − 𝜆 + 2𝜆 [1 − 𝑒𝑥𝑝⁡{−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

𝜙

}

𝜌

𝑑𝑥, 

 

By using the Binomial expansion, the above integral can be written as 

= ∑ 𝒥𝜙,𝜌,𝜆,𝑔,𝒽 ∫ (𝛼 + 𝛽𝛾 (
1

𝑥
)
𝛽−1

)
𝜌

∞

0
(

1

𝑥
)
2𝜌

𝑒𝑥 𝑝 {−
𝛼

𝑥
(𝜌 + 𝒽) − 𝛾 (

1

𝑥
)
𝛽

(𝜌 +∞
𝑔,𝒽=0

𝒽)} 𝑑𝑥 ,          (18) 

where 

𝒥𝜙,𝜌,𝜆,𝑔,𝒽 = 𝜙𝜌 (
𝜌
𝑔) (

𝜌(𝜙 − 1) + 𝜙𝑔
𝒽

)(
2𝜆

1 − 𝜆
)

𝑔

(−1)𝒽(1 − 𝜆)𝜌. 

 

The above integral reduces to

   

 

= ∑ 𝒥𝜙,𝜌,𝜆,𝑔,𝒽 (
𝜌
𝒿) (

𝛽𝛾

𝛼
)

𝒿

𝛼𝜌 ∫ (
1

𝑥
)

𝒿(𝛽−1)+2𝜌∞

0
𝑒𝑥 𝑝 {−

𝛼

𝑥
(𝜌 + 𝒽) − 𝛾 (

1

𝑥
)
𝛽

(𝜌 +∞
𝑔,𝒽,𝒿=0

𝒽)} 𝑑𝑥 ,            (19) 

 

Finally, we obtain the Rényi entropy as 

𝐼𝑅(𝜌) =
𝜌

1 − 𝜌
𝑙𝑜𝑔(𝛼) +

𝜌

1 − 𝜌
𝑙𝑜𝑔(𝜙) +

𝜌

1 − 𝜌
𝑙𝑜𝑔(1 − 𝜆) +

1

1 − 𝜌
𝑙𝑜𝑔 

{ ∑ ∑ (
𝜌
𝑔) (

𝜌(𝜙 − 1) + 𝜙𝑔
𝒽

) (
𝜌
𝒿) (

2𝜆

1 − 𝜆
)

𝑔∞

𝒿,𝒦=0

(−1)

𝒦!

𝒽+𝒦

𝒯(𝛼, 𝛽, 𝛾, 𝜌, 𝒽, 𝒿,𝒦)

∞

𝑔,𝒽=0

},⁡⁡⁡⁡(20) 

where 

𝒯(𝛼, 𝛽, 𝛾, 𝜌, 𝒽, 𝒿,𝒦) =
𝛾𝒦(𝜌 + 𝒽)𝒦

[𝛼(𝜌 + 𝒽)]𝒿(𝛽−1)+𝛽𝒦+2𝜌−1
(
𝛽𝛾

𝛼
)

𝒿

𝛤(𝒿(𝛽 − 1) + 𝛽𝒦 + 2𝜌 − 1). 

 

The extent of dissemination in a population is measured by the totality of deviations from 

the mean and the median. If 𝑋 has the  TNGIW(𝑥; 𝛼, 𝛽, 𝛾, 𝜙, 𝜆), then we can derive the 

mean deviation about mean and about the median M can be obtain from the following 

equations  

𝛿1 = 2{𝜇⁡𝐹(𝜇) − 𝜓(𝜇)}      and      𝛿2 = 𝜇⁡ − 2𝜓(M).    (21) 
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The mean is obtained from (13) with 𝑘 = 1 and the median M is the solution of the non-

linear equation is obtained from (12), where 𝜓(𝑞) can be attained from (5) 

𝜓(𝑞) = (1 − 𝜆) ∑ (
𝜙 − 1

𝓂
)

∞

𝓂,𝓃=0

𝛾𝓃𝜙(−1)𝓂+𝓃(𝓂 + 1)𝓃

𝓃! [𝛼(𝓂 + 1)]𝛽𝓃
ℋ𝓂,𝓃⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

+2𝜆 ∑ (
2𝜙 − 1

𝓂
)∞

𝓂,𝓃=0
𝛾𝓃𝜙(−1)𝓂+𝓃(𝓂+1)𝓃

𝓃![𝛼(𝓂+1)]𝛽𝓃+𝛽−1
⁡ℋ𝓂,𝓃,⁡    (22) 

where 

ℋ𝓂,𝓃 = 𝛼𝛾́ {𝛽𝓃,
𝛼

𝑞
(𝓂 + 1)} + (𝛽𝛾)𝛾́ {𝛽𝓃 + 𝛽 − 1,

𝛼

𝑞
(𝓂 + 1)}. 

 

Hence, the measure in (21) can be obtained from (22). The quantity 𝜓(𝑞) can also be 

used to determine the Bonferroni and the Lorenz curves which have applications in 

econometrics and finance. They are given by 

𝐵(𝑃) =
𝜓(𝑞)

𝑃𝜇
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡and⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿(𝑃) =

𝜓(𝑞)

𝜇
⁡,⁡ 

Where  PQq   is calculated from (12) for a given probability P . 

6.   Order Statistics 

Let 𝑥1⁡, 𝑥2, … , 𝑥𝑛 are independently identically distributed ordered random variables from 

the TNGIW distribution then the pdf of rth order statistic 𝑥(𝑟) is given by 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑ (

𝑛 − 𝑟
𝒫

) (−1)𝒫(𝐹(𝑥))
𝑟+𝒫−1

𝑓(𝑥)

𝑛−𝑟

𝒫=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 

where B(. , . ) is the beta function, by substituting (5) and (7) into (23) we obtain  

⁡⁡⁡⁡𝑓𝑟:𝑛(𝑥) = 𝑛 (
𝑛 − 1
𝑟 − 1

) ∑ ∑ (
𝑛 − 𝑟

𝒫
)

∞

𝒬=0

(
𝑟 + 𝒫 − 1

𝒬
) (−1)𝒫 [1

𝑛−𝑟

𝒫=0

− 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)

𝛽

}]

𝜙(𝒬+1)−1

 

⁡× ϕ(α + βγ (
1

𝑥
)
𝛽−1

)⁡{1 + λ [1 − exp {−
α

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

ϕ

}

r+𝒫−1

⁡exp⁡{−
α

𝑥

− 𝛾 (
1

𝑥
)

𝛽

}𝒰(𝑥) 

⁡𝑓𝑟:𝑛(𝑥) = 𝑛 (
𝑛 − 1
𝑟 − 1

) ∑ ∑ 𝜓𝒫,𝒬,𝒮,𝜆

∞

𝒬,𝒮=0

𝑛−𝑟

𝒫=0

⁡𝒯(𝒬, 𝒮),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24) 

where  

𝜓𝒫,𝒬,𝒮,𝜆 = (
𝑛 − 𝑟

𝒫
) (

𝑟 + 𝒫 − 1
𝒬

) (
𝑟 + 𝒫 − 1

𝒮
) (−1)𝒫+𝒮𝜆𝒮𝜙, 

and  
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𝒯(𝒬, 𝒮) = (α + βγ (
1

𝑥
)

𝛽−1

)exp {−
α

𝑥

− 𝛾 (
1

𝑥
)

𝛽

} [1 − exp {−
α

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

ϕ(𝒬+𝒮+1)−1

𝒰(x). 

 

Using (24), the Sth moment of rth order statistic of 𝑥(𝑟)is given by 

𝜇𝑠
(𝑟:𝑛)

= 𝑛 (
𝑛 − 1
𝑟 − 1

) ∑ ∑ 𝜓𝒫,𝒬,𝒮,𝜆

∞

𝒬,𝒮=0

𝑛−𝑟

𝒫=0

⁡{(1 − 𝜆)ℰ𝒬,𝒮,𝒦,𝒿,1V𝒦,𝒿 + 2𝜆ℰ𝒬,𝒮,𝒦,𝒿,2V𝒦,𝒿},⁡⁡⁡⁡(25) 

where 

ℰ𝒬,𝒮,𝒦,𝒿,𝑔 = ∑ (
𝜙(𝒬 + 𝒮 + 𝑔) − 1

𝒦
)
(−1)𝒦+𝒿[𝛾(𝒦 + 1)]𝒿

𝒿!

∞

𝒦,𝒿=0

, 𝑔 = 1,2 

V𝒦,𝒿 =
αΓ(β𝒿 − 𝒦 + 1)

{α(𝒦 + 1)}(β𝒿−𝒦+1)
+

βγΓ(β(𝒿 + 1) − 𝒦)

{α(𝒦 + 1)}(β(𝒿+1)−𝒦)
 

7.   Applications 

In this section, we illustrate the usefulness of the TNGIW distribution to two real data 

sets. 

7.1. Application 1: Ball bearings data 

The first subsection provides the data analysis in order to assess the goodness-of-fit of the 

proposed model with failure times. We consider the ball bearings data for the number of 

revolution before failure, each of 23 ball bearings in the life tests are as follows 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

 

The data set is reported by Lawless (1982). Transmuted new generalized inverse Weibull 

(TNGIW), new generalized inverse Weibull (NGIW), Kumaraswamy modified inverse 

Weibull (KMIW), Exponentiated Kumaraswamy inverse Weibull (EKIW), 

Kumaraswamy inverse weibull (KIW) and modified inverse Weibull (MIW) distributions 

are fitted to the ball bearings data.   

 

(1) New generalized inverse Weibull (NGIW) distribution with the pdf 

𝑓(𝑥) = 𝜙 {𝛼 + 𝛽𝛾 (
1

𝑥
)
𝛽−1

} 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

} [1 − 𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

}]

𝜙−1

, 𝑥 > 0, 

where 𝛼, 𝛾 > 0 are the scale parameters and 𝛽, 𝜙 > 0 is the shape parameter of the 

NGIW distribution. (Khan and King, 2016) 

 

(2) Kumaraswamy Modified inverse Weibull (KMIW) distribution with the pdf 

𝑓(𝑥) = 𝜙𝜆 {
𝛼

𝑥2
+

𝛽𝛾

𝑥𝛽+1
} 𝑒𝑥𝑝 {−𝜆 (

𝛼

𝑥
+

𝛾

𝑥𝛽
)} [1 − 𝑒𝑥𝑝 {−𝜆 (

𝛼

𝑥
+

𝛾

𝑥𝛽
)}]

𝜙−1

, 𝑥 > 0, 

where 𝛼, 𝛾, 𝜆 > 0 are the scale parameters and 𝛽, 𝜙 > 0 is the shape parameter of the 

KMIW distribution. (Aryal and Elbatal, 2015) 
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(3) Exponentiated Kumaraswamy inverse Weibull (EKIW) distribution with the pdf 

𝑓(𝑥) = 𝛽𝜆𝛾𝜙𝛼𝛽𝑥−(𝛽+1) 𝑒𝑥𝑝 (−𝜆 (
𝛼

𝑥
)
𝛽

) {1 − 𝑒𝑥𝑝 (−𝜆 (
𝛼

𝑥
)
𝛽

)}

𝛾−1

, 

{1 − (1 − 𝑒𝑥𝑝 (−𝜆 (
𝛼

𝑥
)
𝛽

))

𝛾

}

𝜙

, 𝑥 > 0, 

where 𝛽, 𝛾, 𝜙 > 0 are the shape parameters and 𝛼, 𝜆 > 0 is the scale parameter of the 

EKIW distribution. (Rodrigues. et al. 2016) 

 

(4) Kumaraswamy inverse Weibull (KIW) distribution with the pdf 

𝑓(𝑥) = 𝛼𝛽𝛾𝜙 (
1

𝑥
)
𝜙+1

𝑒𝑥𝑝 (−𝛼𝛾 (
1

𝑥
)

𝜙

) {1 − 𝑒𝑥𝑝 (−𝛼𝛾 (
1

𝑥
)
𝜙

)}

𝛽−1

, 𝑥 > 0, 

where 𝛽, 𝜙 > 0 are the shape parameters and 𝛼, 𝛾 > 0 is the scale parameter of the KIW 

distribution. (Shahbaz, et al. 2012) 

 

(5) Modified inverse Weibull (MIW) distribution with the pdf 

𝑓(𝑥) = {𝛼 + 𝛽𝛾 (
1

𝑥
)
𝛽−1

} (
1

𝑥
)
2

𝑒𝑥𝑝 {−
𝛼

𝑥
− 𝛾 (

1

𝑥
)
𝛽

} , 𝑥 > 0, 

where 𝛼, 𝜃 > 0 are the scale parameters and 𝜂 > 0 is the shape parameter of the MIW 

distribution. (Khan and King, 2012) 

Table 2:   MLEs of the Parameters for ball bearings data  

Model Parameter Estimates 

 𝛼̂ 𝛽̂ 𝛾 𝜙̂ 𝜆̂ 

TNGIW 38.9435 

(116.66) 

0.3037 

(0.4461) 

19.2623 

(31.457) 

269.05 

(1502.4) 

0.0830 

(1.5102) 

KMIW 0.0033 0.4652 12.2704 81.0349 2.7148 

 (59.1497) (0.8550) (10.9417) (518.868) (15.7467) 

EKIW 15.19578 0.6798 38.9055 0.5590 12.8083 

 (199.86) (4.0056) (391.486) (5.6098) (95.0540) 

NGIW 28.7722 

(106.97) 

0.3125 

(0.4431) 

20.7116 

(27.708) 

294.19 

(1633.9) 

-  

KIW 4.9550 

(33.011) 

81.1513 

(363.29) 

6.7215 

(44.781) 

0.4650 

(0.4365) 

- 

MIW 0.0011 

(42.172) 

1.8341 

(0.3534) 

1240.1 

(1249.9) 

- - 
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Figure 3:  Fitted Models for failure of ball bearings data 

 

Figure 4:  Estimated Survival function for the TNGIWD for ball bearings data 
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Table 2 listed the MLEs of the unknown parameter(s) and the corresponding standard 

errors for the model parameters. In order to evaluate the performance of the TNGIW 

distribution and can be consider as a superior lifetime model, we shall compare the 

goodness of fit with five other lifetime distributions recently proposed in the literature. 

The visualization of the estimated densities with histogram displayed in Figure 3 indicate 

that the transmuted new generalized inverse Weibull distribution has the better estimates 

comparing with other five distributions. Hence the data points from the TNGIW 

distribution has better relationship and can be consider as the virtuous model for life time 

data. For the goodness of fit statistics, we use the Kolmogorov-Smirnov (K-S) test to see 

which model provides the better estimates and results are displayed in Table 2. In order to 

assess if the model is appropriate, Figure 4 plots the empirical and estimated survival 

functions of the TNGIW distribution. 

Table 3:  Cramér-von Mises, Anderson-Darling goodness of-fit statistics and K-S 

Test 

Distribution 𝒲 𝒜 K-S Test 

TNGIW 0.0318 0.1903 0.1061 

KMIW 0.0338 0.1954 0.1115 

EKIW 0.0346 0.2007 0.1149 

NGIW 0.0335 0.1953 0.1105 

KIW 0.0337 0.1955 0.1114 

MIW 0.0752 0.5552 0.1328 

 

To further verify which distribution provides the better estimates for ball bearings data, 

we apply the Cramér-von Mises and Anderson-Darling goodness of-fit statistics and 

results are displayed in Table 3. The smaller values of these statistics indicate the better 

fit. We detect from Tables 2 and 3 that the TNGIW distribution has the lowest values for 

the Kolmogorov-Smirnov (K-S) test, Cramér-von Mises and Anderson-Darling goodness 

of-fit statistics among the all fitted distributions recently proposed in the literature. 

Therefore the TNGIW distribution can be consider as a good model for the failure times 

of ball bearings data. Figures 4 displays the estimated Survival function of the TNGIW 

distribution with better relationship for the ball bearings data. 

7.2. Application 2: Fatigue life of aluminium data 

The second data set is prearranged by Birnbaum and Saunders (1969) on the fatigue life 

of 6061-T6 aluminium coupons cut parallel with the course of rolling and oscillated at 18 

cycles per second. The data set comprises of 101 observations with maximum stress per 

cycle 31,000 psi. The data are 

 

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109,112, 112, 113, 

114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 

129, 129, 130, 130,130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 

136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142,142, 142, 142, 142, 142, 144, 144, 

145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 

163,163, 164, 166, 166, 168, 170, 174, 201, 212. 
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Table 4:   MLEs of the Parameters for fatigue life of aluminium data and AIC 

Model Parameter Estimates 

 𝛼̂ 𝛽̂ 𝛾 𝜙̂ 𝜆̂ 

TNGIW  765.69 

(933.96) 

1.4084 

(1.1478) 

927.14 

(1753.23) 

313.48 

(389.19) 

0.8173 

(0.1910) 

KMIW 55.5137 143.61 1.4551 66.9352 5.5750 

 (199.86) (54.005) (0.7554) (173.34) (95.054) 

EKIW 33.6575 1.0858 1.6386 121.7002 21.0374 

 (65.1637) (0.9365) (1.6291) (328.69) (0.8763) 

NGIW 686.03 

(693.55) 

1.3005 

(0.6479) 

649.13 

(1844.21) 

362.14 

(361.51) 

-  

KIW 71.1614 

(306.61) 

64.5064 

(98.419) 

90.4453 

(389.55) 

1.4842 

(0.5042) 

- 

MIW 0.0001 

(79.754) 

3.0354 

(0.0557) 

2.24E+6 

(1350.4) 

- - 

 

 

 

Figure 5:  Fitted Models for failure of fatigue life aluminium data 
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Table 5:  Cramér-von Mises, Anderson-Darling goodness of-fit statistics and K-S 

Test 

Distribution 𝒲 𝒜 K-S Test 

TNGIW 0.0416 0.2893 0.0574 

KMIW 0.0495 0.3507 0.0604 

EKIW 0.0506 0.3376 0.0658 

NGIW 0.0531 0.3830 0.0662 

KIW 0.0496 0.3424 0.0639 

MIW 0.2274 1.3069 0.2863 

 

We examine the use of the use of the Transmuted new generalized inverse Weibull 

(TNGIW) distribution for modelling the fatigue fracture life of aluminium data. We fitted 

the TNGIW, NGIW, KMIW, EKIW, KIW and MIW densities are displayed in Table 4 

and goodness of fit measures are listed in Table 5. The histogram of the fatigue fracture 

life of aluminium data is shown in Figure 5 along with the estimated densities of the 

TNGIW, NGIW models. The fitted model suggest that the TNGIW distribution is 

reasonable. These goodness of fit results indicate that the TNGIW distribution has the 

lowest values of the Kolmogorov-Smirnov (K-S) test, Cramér-von Mises and Anderson-

Darling goodness of-fit statistics among the all fitted distributions. We conclude that the 

TNGIW distribution provides a good fit to these data sets.  

 
Figure 6:  Estimated Survival function of TNGIWD for fatigue life aluminium data  
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8.   Concluding Remarks 

We studied and formulated some theoretical properties of the new distribution called the 

transmuted new generalized inverse Weibull distribution. The new distribution presents a 

generalization of several models previously considered in the literature such as 

transmuted modified inverse Weibull distribution, transmuted generalized inverse 

Weibull distribution, transmuted inverse Weibull distribution, modified inverse Weibull 

distribution. The proposed distribution has twenty three lifetime distributions as special 

cases. This proposed model has the upside down bathtub shape failure rate patterns. The 

method of maximum likelihood is employed for estimating the model parameters. The 

usefulness of the new model is illustrated in two applications. We have anticipation that 

the proposed model may attract wider applications in the analysis of lifetime data. 
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